
Modelling the Solar System using Blender & Python

Pyladies Workshop, 08.09.2015

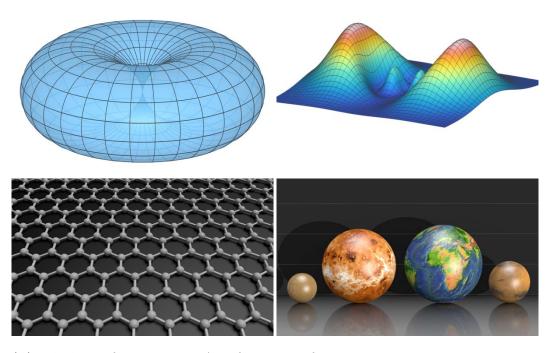
Kristin Riebe

Agenda

- 1. Introduction
- 2. Getting started with Blender (GUI)
- 3. Blender with Python
- 4. Planets

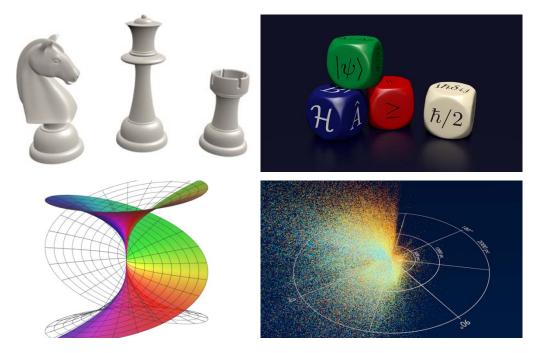
Hands-on session: Write your own planets-script!

1. Introduction

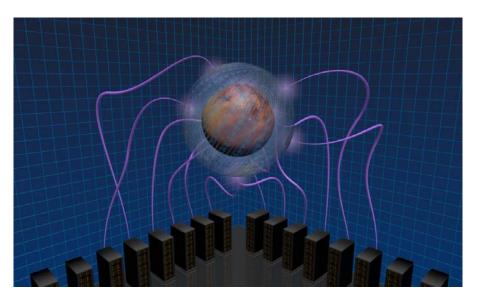

About me

- Leibniz-Institute for Astrophysics Potsdam (AIP)
 - E-Science group: data publication, web services
 - Data visualisation
- Hobby: computer graphics
 - o create images 2D/3D
 - o mainly for scientific articles/books or just for fun

Blender


- Powerful 3D creation suite
- Wide range of applications: geometric objects in 3D, modelling landscapes, animating characters, but also compositing, video editing, ...
- Open Source, released by Blender Foundation, <u>www.blender.org</u>
- Works on Linux, Mac OS and Windows
- Interactive use, but also Python API for scripting
- Full control over light and camera settings, also 3D stereoscopic cameras
- Can be quite overwhelming at first, but:
 - No need to know everything!
 - Can get very far with only some basic knowledge.

Examples: Science


(C) Kristin Riebe, Springer/Spektrum Verlag

Examples II: Science & Fun

(C) Kristin Riebe, top right: Kristin Riebe, Springer/Spektrum Verlag

Examples III: Just for fun

(C) Kristin Riebe

See <u>Blender Artists</u> for great examples what else you can do with Blender!

General tips for Blender

- Save early, save often.
- There are *hotkeys* for nearly everything.
- Use a 3 button mouse (with scroll-wheel).
- Use keyboard with num block.
- Getting help:
 - Blender manual
 - Blender API documentation
 - Blender StackExchange
 - Blender Python Blog
 - Blender Artists Forum
 - There are many, many video tutorials out there!

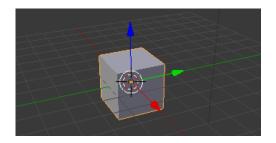
2. Getting started with Blender (GUI)

Start Blender **now**, preferably from the command line.

<u>Installing Blender</u>

Window layout

- Different areas: 3D view, Outliner, Properties, ...
 - 3D view = main working area!
- Each area can have a region attached (toolbar (T key) and properties (N key)).
- Highly customizable, can switch every area to any other area, define own hotkeys etc.
- Last resort if something breaks with window layout/GUI:
 File -> Load Factory Settings or just restart Blender
- **Important:** Anything you type only affects the window with the mouse pointer!


Thus be careful to put the mouse pointer in the correct area!

Navigation

- Zooming in and out: mouse wheel
- Rotate around current center:
 - o click middle mouse button (MMB) and drag
 - for setting the view center to currently selected object:
 choose View -> View Selected from menu or hit Numpad .
- Pan (move sideways): hold Shift key and MMB together and move the mouse sideways.

Selecting and moving objects

- Select object: right mouse click (RMB)
- Add object to current selection: Shift + RMB
- Active object = last selected object! (white highlight)
- Moving objects:
 - Place mouse pointer on one of the 3 arrows, click with left mouse button (LMB), drag it along the line, release LMB
 - Hit G key ("grab"), move the mouse pointer until ready, then
 click with LMB

Typical steps

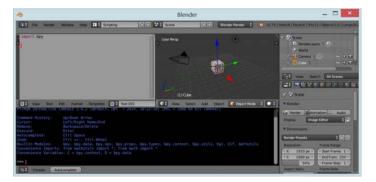
- Add object, adjust location, size, shape
 - Use Add menu at bottom of 3D view area, e.g.:

```
Add -> Mesh -> UV Sphere
```

- Move using arrows and LMB
- Add material (color, transparency, reflection etc.)
 - At Properties area, Material tab: click New button
- Add texture
 - At *Properties* area, *Textures* tab: click New
- Add contraints or modifiers (also in *Properties*)
- Add keyframes for animation (using timeline and I key)
- Adjust light and camera for the scene
- Render the scene

Rendering

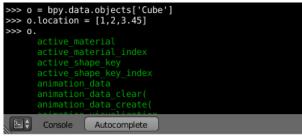
- = Take a picture of your scene
- Need a camera and a light source (lamp)
- Object must be visible for camera
 - Check with View -> Camera (Numpad 0)
- Render:
 - Render -> Render Image (at top menu, close to File)
 - or F12
 - or in *Properties* area, *Render* tab, press *Render* button
 - or directly from command line:

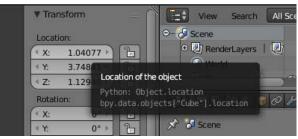

```
blender -b <yourfile.blend> -f 1
```

• Quit *Render view* using Esc key.

3. Blender with Python

Basics


- Nearly everything done in the GUI can be scripted via Python.
- Blender uses Python 3, bundled
- Start Blender from the **command line**, otherwise no error output!
- Use **Scripting layout** with *Text Editor* and *Python Console*
- Load/write scripts inside Text Editor, Text -> Run Script
- Use **import bpy** inside scripts to import Blender functions
- Use Text -> Save As or Save to save text as external file.


From GUI to Python

- Graphical interface supports you with:
 - **Info** window:
 - at the top, above or below *File* menu
 - shows log of the applied functions
 - Tool tips:
 - when hovering with the mouse over a button, field, object or other elements
 - Right mouse-click context menu:
 - often contains link to Blender documentation
 - Python Console:
 - test functions and properties immediately
 - use Ctrl + Space for auto-completion

Python Console, Tooltips and Info

Python Console

Tool tip

```
py.context.object.location[0] = 1
bpy.context.object.location[1] = 2.3
bpy.context.object.location[2] = 0.5
bpy.context.object.scale[0] = 3
bpy.context.object.scale[1] = 1
bpy.ops.transform.translate(value=(0, -2.14644, 0), constoroportional_edit_falloff='SMOOTH', proportional_size=1,
```

Info log

Active object/choose object

- bpy.context.object = active object (last selected)
- Can be replaced by another object like this:myobj = bpy.data.objects['CameraPath']
- Example:

```
bpy.context.object.location[0] = 1.0

myobj = bpy.data.objects['CameraPath']
myobj.location[0] = 1.0
```

Mode

- Available functions and operators change with current mode!
- Adjust mode in bottom menu of 3D view area
- Only need Object Mode and Edit Mode for this session:
 - Object mode: change global properties
 - Edit Mode: change data, e.g. handles of Bézier curves,
 vertices and faces of a mesh
- Always switch back to Object Mode before running scripts in this workshop!
- Via Python: bpy.ops.object.mode_set(mode='OBJECT')

Operators

- Start with bpy.ops.
- Operate on the current context, i.e. usually on currently active object, in the current mode
- Example: smooth a sphere (*Object* mode):

```
sph = bpy.data.objects['Sphere']
bpy.context.scene.objects.active = sph
bpy.ops.object.shade_smooth()
```

- Generally slow, but encapsulate more complex steps
- Use underlying low-level functions, when possible and useful

Adding objects I

• Using (primitive) operator:

```
bpy.ops.mesh.primitive_uv_sphere_add(...)
obj = bpy.context.object
mesh = obj.data
```

Adding objects II

• Using low level functions:

```
mesh = bpy.data.meshes.new(meshName)
obj = bpy.data.objects.new(objName, mesh)
scn = bpy.context.scene
scn.objects.link(obj)
scn.objects.active = obj
obj.select = True
mesh.from_pydata(verts, [], faces)
mesh.update()
```

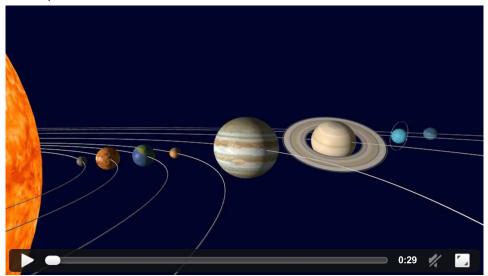
See <u>Three ways to create objects</u>

Data collections

- Module bpy.data gives access to data in currently loaded Blender file
- Examples:
 - bpy.data.objects: collection of all objects in the scene
 - o bpy.data.materials: collection of all materials
 - bpy.data.textures: collection of all textures
- Blender's collections allow use of index or string for accessing elements:
 - o bpy.data.objects['Camera']
 - bpy.data.objects[0]

More advanced usage

- Blender allows to integrate Python scripts directly:
 - via own defined operators
 - o by defining menus and panels for custom scripts, own add-ons
 - by inserting new buttons into existing panels
- Look at *Text Editor*, **Templates** menu for such examples.
- There's a number of useful Add-ons available, see File -> User
 Preferences, Add-ons
- We won't use these in this workshop.

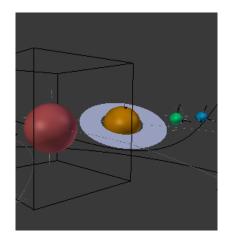

4. Planets

Planets?

- Non-glowing bodies, orbiting around a star
- 8 planets for the Sun
- Properties:
 - o closely resemble spheres, a bit flattened
 - each planet has different surface or cloud structure
 - rotate around star on ellipses (mostly close to circles)
 - rotate around their own axis
 - own rotation axis is tilted
 - some planets have ring system
 - have very different rotation times and orbit periods
- Solar system in 3D should reflect this

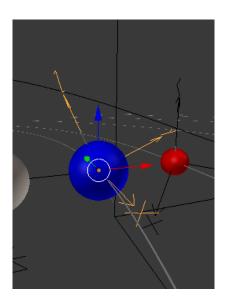
Creating planets with Blender

- Materials on GitHub, linked at:
 http://kristinriebe.github.io/solarsystem-workshop/
- Contains instructions to guide you
- Example for final animation:



Getting started

- Start Blender from command line
- Open planets-template.blend
- In *Text Editor*, load create_planet.py
- Comment all functions except add_sphere
- Run the script: Text -> Run Script (Alt + P)
- Test e.g. changing location, size, color
- Add material and textures, check interface and script
- Render to see results


Main tutorial steps I

- Create spheres, add color and texture
 - o use template script, adjust it
- Read planet properties from file
 - use csv module, dict reader
- Add flattening, axial tilt, rings
 - manipulate properties
 - use another script as module
- Orbit paths
 - add curves, adjust thickness
- Camera animation
 - constraints (Follow Path, Track To)
 - o keyframe evaluation time

Main tutorial steps II

- Orbit animation
 - use constraint (Follow Path)
 - keyframe evaluation time
 - adjust animation curves (F-Curves)
 - apply transformations
- Rotation animation
 - parenting
 - set keyframes
 - adjust animation curves (F-Curves)
- Render
 - via interface or script

Have fun!

http://kristinriebe.github.io/solarsystem-workshop/